Enthalpy (Heat) of Fusion [$\left.\Delta \mathbf{H}_{\text {fus }}\right]$ \& of Vaporization [$\Delta \mathbf{H}_{\text {vap }}$] Worksheet

These Enthalpies (Heats) are the amount of energy required (or given off) BY ONE GRAM of the substance when it is changing from one phase to another. During this phase change the temperature remains constant so there's no temp change in the equation. ' Cp ', our specific heat variable, is replaced with the symbols $\Delta \mathrm{H}_{\text {fus }}$ \& $\Delta \mathrm{H}_{\text {vap }}$ depending on the phase change for which we are calculating.
Remember that Enthalpy of Fusion refers to changing between solid and liquid (melting or freezing) and Enthalpy of Vaporization refers to changing between liquid and gas (evaporation or condensation).

$$
\text { In general: } \begin{aligned}
& \mathrm{q}=\mathrm{m} \Delta \mathrm{H}_{\text {fus }} \text { for enthalpy of Fusion } \\
& \mathrm{q}=\mathrm{m} \Delta \mathrm{H}_{\text {vap }} \text { for enthalpy of Vaporization }
\end{aligned}
$$

1. How much heat is required to melt 360 g of solid water? Important constant: $\Delta \mathrm{H}_{\text {fus }}$ of water is $334 \mathrm{~J} / \mathrm{g}$.
2. How much heat is required to vaporized 24 g of liquid water? $\Delta \mathrm{H}_{\text {vap }}$ of water is $2257 \mathrm{~J} / \mathrm{g}$.
3. For a 500 g block of lead (Pb) to melt, how much energy is needed? $\Delta \mathrm{H}_{\text {fus }}$ of lead is $23 \mathrm{~J} / \mathrm{g}$.
4. Mercury is a metal that is a liquid at room temperature. In order to solidify 7.5 g of it, how much energy needs to be removed? $\Delta \mathrm{H}_{\text {fus }}$ of Hg is $11.3 \mathrm{~J} / \mathrm{g}$.
5. What is the heat of vaporization of ammonia $\left(\mathrm{NH}_{3}\right)$ if 0.15 g of it requires 206.5 J for evaporation?
6. Ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ very easily changes from a liquid to a gas. If 29.34 g of ethanol uses 32.23 J of energy what would its $\Delta \mathrm{H}_{\text {vap }}$ be?
7. Iron is the heaviest metal vaporized in the sun. Its $\Delta \mathrm{H}_{\text {vap }}$ is $6071.43 \mathrm{~J} / \mathrm{g}$. How much heat is needed to turn (keep) . 5 kilogram, 500 grams of iron into a gas?
8. In order for 5 g liquid Hydrogen to become a solid, 12J of energy must be removed. What is the $\Delta \mathrm{H}_{\text {fus }}$ for the element, Hydrogen?
