Heat and Temperature - Cut from Jan 2007 - Jan 2008 Exams

1. Given the balanced equation:

$$I + I \rightarrow I_2$$

Which statement describes the process represented by this equation?

- (1) A bond is formed as energy is absorbed.
- A bond is formed and energy is released.
- (3) A bond is broken as energy is absorbed.
- (4) A bond is broken and energy is released.
- 2. Which term is defined as a measure of the average kinetic energy of the particles in a sample?
 - (13) temperature
- (3) thermal energy
- (2) pressure
- (4) chemical energy

- 3. Which term refers to the difference between the potential energy of the products and the potential energy of the reactants for any chemical change?
- (1) heat of deposition
- (2) heat of fusion
- heat of reaction
- (4) heat of vaporization

- 4. Which kelvin temperature is equal to 56°C?
 - (1) -329 K
- (3) 217 K
- (2) -217 K
- **329 K**
- 5. Which reaction releases the greatest amount of energy per 2 moles of product?
 (1) 2CO(g) + O₂(g) → 2CO₂(g)
 (2) 4Al(s) + 3O₂(g) → 2Al₂O₃(s)

$$(2) \frac{2 \operatorname{CO}(g) + \operatorname{O2}(g) \to 2 \operatorname{CO2}(g)}{(2) \operatorname{AAl}(s) + 3 \operatorname{O2}(g) \to 2 \operatorname{Al2O_3}(s)}$$

$$(3) \frac{2 \operatorname{H2}(g) + \operatorname{O2}(g) \to 2 \operatorname{H2O}(g)}{(4) \operatorname{N2}(g) + 3 \operatorname{H2}(g) \to 2 \operatorname{NH_3}(g)}$$

Tiespale your is entitle as an accompany of the party of

evalves as enough price of the property of the

Use the reaction shown below to answer questions 6 and 7.

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(\ell) + 2219.2 \text{ kJ}$$

Draw a potential energy diagram for this reaction. [1]

folketing products (\$4), staubord and in bands, versits and establish an events of the folketing of the folk

7. Determine the total amount of energy released when 2.50 moles of propane is completely reacted with oxygen. [1]

Given the balanced equation representing a reaction: raw a potential energy diagram for this reaction. [1]

$$N_2(g) + O_2(g) + 182.6 \text{ kJ} \rightarrow 2NO(g)$$

Base your answers to questions 9 through 11 on the information below.

A 5.00-gram sample of liquid ammonia is originally at 210. K. The diagram of the partial heating curve below represents the vaporization of the sample of ammonia at standard pressure due to the addition of heat. The heat is not added at a constant rate.

Partial Heating Curve for Ammonia

Some physical constants for ammonia are shown in the data table below.

Some Physical Constants for Ammonia

specific heat capacity of NH ₃ (t)	4.71 J/g•K
heat of fusion	332 J/g
heat of vaporization	1370 J/g

9. Calculate the total heat absorbed by the 5.00-gram sample of ammonia during time interval AB. Your response must include both a correct numerical setup and the calculated result. [2]

onse must include both a correct numerical setup and the calculated result. [2]
$$Q = mC \Delta T = (5.00g)(4.71 \text{ J/g} \cdot \text{K})(240 - 210 \text{ K})$$

$$= (706.57)$$

10. Describe what is happening to both the potential energy and the average kinetic energy of the molecules in the ammonia sample during time interval BC. Your response must include both potential energy and average

11. Determine the total amount of heat required to vaporize this 5.00-gram sample of ammonia at its boiling point. [1]

$$q = m \Delta H_{\text{vap.}}$$

= $(5.00g)(1370 \text{ J/g})^{46}$
= $(6850 \text{ J})^{46}$

Base your answers to questions 12 through 14 on the information below.

A 100.0-gram sample of NaCl(s) has an initial temperature of 0°C. A chemist measures the temperature of the sample as it is heated. Heat is *not* added at a constant rate. The heating curve for the sample is shown below.

12. Determine the temperature range over which the entire NaCl sample is a liquid. [1]

CD

13. Identify one line segment on the curve where the average kinetic energy of the particles of the NaCl sample is changing. [1]

AB or CD

14. Identify one line segment on the curve where the NaCl sample is in a single phase and capable of conducting electricity. [1]

Nacl conducts electricity as a liquid because it is an ionic compound, (metal + nonmetal)

SO CD.

<u>Equations & Stoichiometry – Practice Questions</u>

-03	La proposito de 5	10 7 7.0	to the		
1.	Which substance ha	as the greatest mol	ecular mass?	COL I	5
	(1) H ₂ O ₂	(2) NO	(3) CF ₄	(4) 74 g	
Tie of	34 glmol	30 gimol		+2(1)=57	ami 96
2.	What is the gram for	ormula mass of Ca(OH)2? 23 + 2(14)	12017 5 In thought	
	(1) 29 g	(2) 34 g	② 57 g	(4) /4 g	
	n La talli, and both f	Commo phirms c	yd archivernasi oc	May 1 (page 1)	
3.		umber of moles of a	itoms present in 1 gr	am formula mass of	1 0
	Pb(C ₂ H ₃ O ₂) ₂ ?	(2) 4.4	(2) 2	Pb (Cz)	H302)2
			(3) 3		Pb = 1 ato
1	Small value 1917 (20)	so of coulon in UA	U.O. is equal to 2/16	$(4) \frac{60}{12} \times 100$	C = 4 aton
4.	The percent by ma	SS OF CALDOLL IN THE 21	1302 is equal to 2012	60	H = 6 atom
	$(1) \frac{12}{60} \times 100$	$\frac{24}{100} \times 100$	(3) $\frac{60}{24} \times 100$	$(4) \frac{60}{12} \times 100$	D=4 atom
	60 THE 60 HS 15	60	24	12	15 atom
					171
٥.	What is the empiric	Colored Colore		(4) CH ₆	
	(1) CI1	CI IZ	(3) CH3	(7) (16)	
6.	The name of the co	ompound KCIO2 is p	otassium	32-	
	155 hypochlorite	Cluz	(3) chlorate C10	Z	A. 26 (C.
63	(2) chlorite Clo	0,-2	(4) perchlorate (2 4- 10 z 4 ne zpo dokuju s	WY B
	fueds enin.	THU +	504 2-	n in ditangent	e odki
7.	Which formula is co	orrect for ammonius	m sulfate?	en en militares e tolografia	
	(1) NH ₄ SO ₄	(NH ₄) ₂ SO ₄	(3) NH ₄ (SO ₄) ₂	(4) (NH) ₃ (SO ₄) ₂	
B	T amus and to as	the atomic mass	to inua della et son si	rame a la serie calque e	THE TOTAL
8.			is represented by X ₃	Y ₆ . What is the empirical	iul am
	formula of this con		Mary	(4) 10/	
	(1) X ₃ Y	(2) X ₂ Y	(3) XY ₂		167 E
۵	The number of mo	les of molecules in :	a 12.0-gram samples	of Clz is 12 g	= moles
٦.	12.0	12.0	a 12.0-grain samples	671g/mel	
10 10 100	(1) $\frac{12.0}{35.5}$ mole	$(2) \frac{12.0}{71.0}$ mole	(3) 12.0 moles	(4) 12.0 x 35.5 moles	
	55.5	71.0		Assertation and a second	
10	. What is the total n	umber of moles of s	sulfur atoms in 1 mole	e of $Fe_2(SO_4)_3$? $Fe = 2$	atoms
	(1) 1	(2) 15	(3) 3	Ø 17 S-3	atoms atoms
			1000	0 = 12	atoms
11	Given the unbalance	ced equation:		17	atoms
	3	CaSO ₄ + 2 AICI	3 → Al ₂ (SO ₄) ₃ ·	+ 3 CaCl ₂	
	What is the coeffic	ient of Al-(SO.). wh	en the equation is so	mpletely balanced using the	
	smallest whole-nur		en die equation is coi	impletely balanced using tr	ic .
	1	(2) 2	(3) 3	(4) 4	
	- W W -	\-/ -	\-/-	1.7	

Base your answers to questions 21 through 23 on the information below.

Some dry chemicals can be used to put out forest fires. One of these chemicals is NaHCO₃. When NaHCO₃(s) is heated, one of the products is CO₂(g), as shown in the balanced equation below.

2 NaHCO₃(s) + heat
$$\rightarrow$$
 Na₂CO₃(s) + H₂O(g) + CO₂(g)

21. Show a correct numerical setup for calculating the percent composition by mass of carbon in the product Na₂CO₃. [1]

$$\frac{part}{whole} \times 100 = \frac{12 \text{ g}}{2(23) + 12 + 3(16)} \times 100$$

22. Identify whether the reaction is endothermic or exothermic. [1]

23. Determine the total number of moles of CO₂(g) produced when 7.0 moles of NaHCO₃(s) is completely reacted. [1]

reacted. [1]
$$\frac{2 \text{ mol NaHCO}_3}{1 \text{ mol CO}_2} = \frac{7.0 \text{ mol NaHCO}_3}{x}$$

$$\frac{2 \text{ x} = 7 \rightarrow x = 3.5}{z}$$

3.5 moles

24. Balance this chemical equation: [1]

$$3 S(s) + 2 KClO3(s) \rightarrow 3 SO2(g) + 2 KCl(s) + energy$$

Base your answers to questions 25 through 27 on the information below.

Rust on an automobile door contains Fe₂O₃(s). The balanced equation representing one of the reactions between iron in the door of the automobile and oxygen in the atmosphere is given below.

$$4Fe(s) + 3O_2(g) \rightarrow 2Fe_2O_3(s)$$

- 25. Identify the type of chemical reaction represented by this equation. [1] Synthesis
- 26. Determine the gram-formula mass of the product of this reaction. [1]