Oxidation Number Exercise

Do not hand in this work sheet. When you are ready, you will be given an examination over this material. Complete the examination by yourself and hand it in to receive credit.

Purpose: This exercise is designed to teach the student how to assign oxidation numbers. Oxidation numbers are very important and are used for 1) naming compounds, 2) balancing oxidation-reduction reactions, 3) calculations in electrochemistry and other areas of chemistry.

Rule 0 The following rules are in the form of a hierarchy; that is, the first stated rule takes precedence over subsequent rules if a conflict arises.

Rule 1 The oxidation numbers for all the atoms in a neutral molecule must add up to 0. Similarly, the oxidation numbers for all the atoms of an ion must add up to the charge of the ion. (You are expected to recognize polyions. For the common polyions, know their charges and their names. A summary of the common polyions appears on page xiv. The first step is, always, to determine what polyions are present.)

Rule 1a The oxidation number of elements in the elemental form is 0. (Note - this rule is a direct consequence of rule 1. How so?)

Rule 1b The oxidation number of any monatomic ion is the same as its charge. (See comment in 1a.)

Exercises - Give the oxidation number for the following atoms:

- O_2: $O = \underline{\hspace{2cm}}$
- F_2: $F = \underline{\hspace{2cm}}$
- S_8: $S = \underline{\hspace{2cm}}$
- Cl_2: $Cl = \underline{\hspace{2cm}}$
- N_2: $N = \underline{\hspace{2cm}}$
- Al: $Al = \underline{\hspace{2cm}}$
- Co^{2+}: $Co = \underline{\hspace{2cm}}$
- Mn^{2+}: $Mn = \underline{\hspace{2cm}}$
- Cl^{-}: $Cl = \underline{\hspace{2cm}}$
- Cr^{3+}: $Cr = \underline{\hspace{2cm}}$
- I_3^{-}: $I = \underline{\hspace{2cm}}$
- Hg_2^{2+}: $Hg = \underline{\hspace{2cm}}$
Rule 2 Fluorine has an oxidation number of -1.

Exercises - Give the oxidation number for the following atoms:

NaF, Na = _____ \(\text{IF}_3 \), I = _____ \(\text{ClF}_2^- \), Cl = _____
SF\(_4\), S = _____ \(\text{PF}_3 \), P = _____ \(\text{SF}_6^{2-} \), S = _____
PF\(_5\), P = _____ \(\text{PF}_6^{3-} \), P = _____ \(\text{W}_2\text{F}_9^{3-} \), W = _____
OF\(_2\), O = _____ \(\text{NF}_3 \), N = _____ \(\text{F}_2 \), F = _____

Rule 3 The metals of group 1 (old CAS IA) have an oxidation number of +1
The metals of group 2 (old CAS IIA) have an oxidation number of +2
Sc, Y and Al have an oxidation number of +3.

Exercises - Give the oxidation number for the following atoms:

Na\(_2\)O, Na = _____ \(\text{Na}_2\text{O}_2 \), O = _____ \(\text{KO}_2 \), O = _____
NaOH, Na = _____ \(\text{ScH}_3 \), H = _____ \(\text{LiH} \), H = _____
CaC\(_2\), C = _____ \(\text{CaMgO}_2 \), O = _____ \(\text{MgH}_2 \), H = _____
MgF\(_2\), Mg = _____ \(\text{RbO}_2 \), O = _____ \(\text{MgSF}_6 \), S = _____
NaPF\(_6\), P = _____ \(\text{LiBF}_4 \), B = _____

Rule 4 Hydrogen has an oxidation number of +1 when combined with elements on the right side of the periodic chart (non-metals) and a -1 when combined with elements on the left side of the periodic chart (metals).

Exercises - Give the oxidation number for the following atoms:

HCl, Cl = _____ \(\text{HF} \), F = _____ (why) \(\text{NaOH} \), O = _____
HI, I = _____ \(\text{UH}_3 \), U = _____ \(\text{NH}_4^+ \), N = _____
PH\(_3\), P = _____ \(\text{H}_2\text{SF}_6 \), S = _____ \(\text{NH}_3 \), N = _____
AsH\(_3\), As = _____ \(\text{ScH}_3 \), Sc = _____ \(\text{HPF}_4 \), P = _____
H\(_3\)O\(^+\), O = _____ \(\text{OH}^- \), O = _____
Oxidation Number Exercise

Rule 5 Oxygen has an oxidation number of -2. (Note: Your knowledge of the polyions is now needed. The polyions you are responsible for knowing are on xiv. **Turn to xiv now and become familiar with this chart.** Notice that for the polyions on xiv, the oxidation number for oxygen is -2)

Cautionary Note: Review Rule 0.

Exercises - Give the oxidation number for the following atoms:

- Co(ClO)₂: Co = _____, Cl = _____, Na₂O₂: Na = _____, O = _____
- CoCrO₄: Cr = _____, Co = _____, AgNO₃: Ag = _____, N = _____
- Mg(OH)₂: Mg = _____, O = _____, H₂SO₄: S = _____
- RbO₂: Rb = _____, O = _____, ClO₄⁻: Cl = _____
- KMnO₄: Mn = _____, K = _____, NH₄OH: N = _____
- OF₂: F = _____, O = _____, IO₃⁻: I = _____
- KO₂: K = _____, O = _____, K₂Cr₂O₇: Cr = _____
- IO₂⁻: I = _____, BrO₂⁻: Br = _____
- Zn(NO₂)₂: Zn = _____, O = _____

Cautionary Note: Review Rule 0 again

Rule 6 Group 17 (old CAS VIIA) atoms have an oxidation number of -1.

Rule 7 Group 16 (old CAS VIA) atoms have an oxidation number of -2.

Rule 8 Group 15 (old CAS VA) atoms have an oxidation number of -3.

Exercises - Give the oxidation number for the following atoms:

- PH₃: P = _____, CH₃NH₂: C = _____, CN⁻: C = _____
- BF₃NH₃: B = _____, MnCl₄: Mn = _____, W₂Cl₉³⁻: W = _____
- Co₃N₂: Co = _____, NCl₃: N = _____, KSCN: C = _____
- HCN: C = _____, POCl₃: P = _____, V₃N₄: V = _____
Additional (Optional) Exercises:

NH₃ N = _______ As₂O₅ As = _______ SiF₄ Si = _______
HNO₃ N = _______ N₂H₄ N = _______ PCl₆⁻ P = _______
MnO₂ Mn = _______ CrCl₃ Cr = _______ Cr₂O₇²⁻ Cr = _______
AgCH₃COO Ag = _____ N₂O N = _______ N₂O₅ N = _______
Au₂O Au = _______ AuO Au = _______ CuSO₄ Cu = _______
Os₂O₅ Os = _______ Fe₃O₄ Fe = _______ Fe₂O₃ Fe = _______
FeO Fe = _______ FePO₄ Fe = _______ SiO₂ Si = _______
H₂S S = _______ FeS S = _______ NaHCO₃ C = _______
AuHCO₃ Au = _______ ScAsO₄ As = _______ NH₄OH N = _______
SO₃ S = _______ H₂CrO₄ Cr = _______ H₄P₂O₇ P = _______
Cl₂ Cl = _______ S₂O₃²⁻ S = _______ MgC₂ C = _______
S₂Cl₂ S = _______ Cr₂(CO₃)₃ Cr = _______ K₃FeO₄ Fe = _______
S₈ S = _______ BO₂⁻ B = _______ Al₂O₃ Al = _______
Ag₂CrO₄ Ag = _______ RbO₂ O = _______ I₃⁻ I = _______
RbH H = _______ Th₄H₁₁ Th = _______ NaHSO₄ S = _______
Na₂HPO₄ P = _______ Eu₃(PO₃)₂ P = _______ B₄O₇²⁻ B = _______
P₄O₁₀ P = _______ BeF₂ Be = _______ P₄O₁₀ P = _______
OF₂ F = _________ O = _________
Ce(ClO₃)₂ Ce = _________ Cl = _________
Fe(MnO₄)₂ Mn = _________ Fe = _________
NaSCN S = _________ C = _________ N = _________