Monday, April 13th

<u>Learning Target</u>: I can balance equations to show that mass and charge are conserved.

Homework: Hand in missing work

As you enter... (Write down questions and answers)

Write the oxidation numbers above each element. Then write the

oxidation and reduction half-reactions.

Oxidation half-reaction: $(C_{\circ} \rightarrow C_{\circ})^{+} + (C_{\circ} \rightarrow C_{\circ})^{+}$ Reduction half-reaction: $(C_{\circ} \rightarrow C_{\circ})^{+} + (C_{\circ} \rightarrow C_{\circ})^{+}$

-- Are the # of electrons lost equal to the # gained?

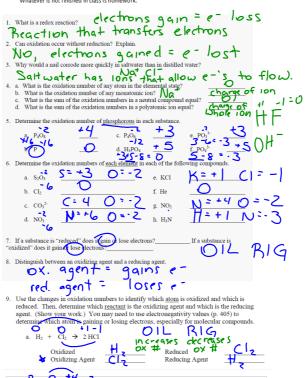
Reminder: Quiz Wednesday (Vocab, Oxidation #, Half-Reactions)

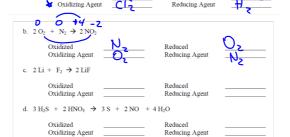
All assignments for 3rd mkg period due by Friday

Statement of Inquiry: Energy allows for the movement of the parts of a system which is used to manipulate chemical reactions for scientific and technological uses.

3rd period:

- More & more practice writing half-reactions! (45 min)
- Exit Tix (5 min)


Tix out the door (Don't forget your name.)



Write the half-reactions for the following reaction. Identify which is oxidation and which is reduction.

$$Fe + Pb^{+2} --> Fe^{+3} + Pb$$

ELECTROCHEMISTRY: Half-Reactions Whatever is not finished in class is homework

10. Write the oxidation number above each element. Then, determine if each equation represents a redox reaction (circle yes or no).

a. $2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$ yes / no b. $BaCl_2 + 2 KIO_3 \rightarrow Ba(IO_3)_2 + 2 KCl$ yes / no c. $HCl + NaOH \rightarrow H_2O + NaCl$ yes / no d. Mg + Br₂ \rightarrow MgBr₂ yes / no e. $NH_4NO_3 \rightarrow N_2 + H_2O$

__Cu⁺² + __

_AI + _____H⁺¹ ---> _____AI⁺³ + __

Tuesday, April 14th

Learning Target: I can compare and contrast hydrogen fuel cell vs electric powered vehicles in terms of electrochemistry.

Homework: Hand in missing work

As you enter... (Write down questions and answers) OIL RIG Balance the reaction using the half-reactions method $\frac{2 \text{ Mn}^{+2} + 2 \text{ Cl}_2 -> 2 \text{ MnCl}_4}{2 \text{ Nn}^{+2}}$ loses $e^- \rightarrow 1 \text{ ox } \#$ $2\left(\text{Mn}^{+2} \rightarrow \text{Mn}^{+4} + 2e^-\right) \text{ OxIdation}$ $\frac{2 \text{ Cl}_2^0 + 4e^- \rightarrow 4 \text{ Cl}^-}{2 \text{ Cl}_2^0 -> 4 \text{ Cl}^-}$ Reminder: Quiz tomorrow (Vocab, Oxidation #, Half-Reactions)

All assignments for 3rd mkg period due by Friday

Statement of Inquiry: Energy allows for the movement of the parts of a system which is used to manipulate chemical reactions for scientific and technological uses.

3rd period:

- Article: Hydrogen Fuel Cell vs Electric Cars (45 min) 4th period:
- Make up period... You must do the following in order until completion:
- Missing work on progress report
- Electrochem classwork and homework
- HW Extra Credit (aka Study sheet for quiz)
- Exit Tix (5 min)

Tix out the door (Don't forget your name.)

Balance the equation by writing out the half-reactions and balancing the charge (# of electrons).

$$\underline{\qquad}$$
 $Cr^{+6} + \underline{\qquad} Ag --> \underline{\qquad} Cr^{+2} + \underline{\qquad} Ag^{+}$

by Tanya Lewis, Staff Writer | January 28, 2015 07:05am ET

Reddit

More ▼

Battery-powered electric cars and hydrogen fuel cell vehicles have both seen advances in their development, and one or both of these technologies a may represent the future of "green" automobiles.

Both technologies offer a cleaner alternative to internal combustion engines, and both use electric motors powered by electrochemical devices. But what's the difference between them? For one, electric vehicles

use energy stored in a battery, whereas fuel cell vehicles have stored fuel that reacts to produce energy.

Hydrogen Fuel Cells (with hydrogen and oxygen electrodes)

Anode side (an oxidation reaction):

 $2H_2 => 4H^+ + 4e^-$

0.0 V

Cathode side (a reduction reaction):

 $O_2 + 4H^+ + 4e^- => 2H_2O$

+ 1.23 V

Net reaction (the "redox" reaction): Total= 1.23 V

 $2H_2 + O_2 => 2H_2O$

Lithium ion battery half cell reactions

$$CoO_2 + Li^+ + e \leftrightarrow LiCoO_2$$

 $Li^+ + C_6 + e \leftrightarrow LiC_6$

Fº ~ -3 V

Overall reaction during discharge

$$E_{oc} = E_{+} - E_{-} = 1 - (-3.01) = 4 \text{ V}$$

Wednesday, April 15th

<u>Learning Target</u>: I can demonstrate my ability to write halfreactions and balance equations.

Homework: Hand in missing work

As you enter... (Write down questions and answers)

Balance the reaction using the half-reactions method 3 $Ag^+ + \bot Fe^{-3} Ag + \bot Fe^{+3}$

oxidation

Fe > Fe +3

te' + 3e

reduction $3(Ag^+ + e^- \rightarrow Ag^-)$

Reminder: You can retake a quiz. I am after school today and tmw.

All assignments for 3rd mkg period due by Friday

Statement of Inquiry: Energy allows for the movement of the parts of a system which is used to manipulate chemical reactions for scientific and technological uses.

3rd period:

- Quiz (30 min) **LAST GRADE FOR 3RD MKG PER**
- HW Extra Credit (15 min)
- [Review Quiz if time permits]

Tix out the door (Don't forget your name.)

n/a

Thursday, April 16th

<u>Learning Target</u>: I can test the cell potential of different metals to observe the properties of electrochemical cells.

Homework: Hand in missing work

As you enter... (Write down questions and answers)

Make two inferences

about the properties

of electrochemical

cells based on the

simulation.

Reminder: You can retake a quiz during lunch or after school.

Statement of Inquiry: Energy allows for the movement of the parts of a system which is used to manipulate chemical reactions for scientific and technological uses.

3rd/4th period:

- Review Quiz (15 min)
- Lab 21: Electrochemical Cells (60 min)

Lab notes...

- -Correction: Green wire is positive (+) and blue wire is negative (-).
- -Do not pour anything down the drain. There are labeled waste beakers.
- -Be careful not to cross-contaminate pipettes.
- -Clean up your area and rinse out your electrochemical cells.

Actual values:

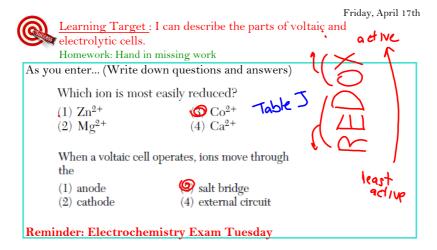
Al= 0.6V Cu= 0.1V Fe= 0.3V

Pb= 0.4V Zn=1.0V

Tix out the door (Don't forget your name.)

- 1. What information does Table J give you?
- 2. According to Table J, what is the most active metal?

^{**}All assignments for 3rd mkg period due tomorrow**


Oxidation: Na
$$\rightarrow$$
 NaOH + Hz

Oxidation: Na \rightarrow Na⁺¹ + le-
reduction: $2H^{+1} + 2e^{-} \rightarrow H_{z}$

Oxidized = Na reduced = $H_{z}O$

OA = $H_{z}O$

RA = $N_{z}O$

Statement of Inquiry: Energy allows for the movement of the parts of a system which is used to manipulate chemical reactions for scientific and technological uses.

3rd period:

- Electrochemical Cells Stations (30 min)
- Voltaic Cells Intro (10 min)
- Exit Tix [5 min]

Tix out the door (Don't forget your name.)

Which statement describes where the oxidation and reduction half-reactions occur in an operating electrochemical cell?

- (1) Oxidation and reduction both occur at the anode.
- (2) Oxidation and reduction both occur at the cathode.
- (3) Oxidation occurs at the anode, and reduction occurs at the cathode.
- (4) Oxidation occurs at the cathode, and reduction occurs at the anode.