Monday, April 13th

<u>Learning Target</u>: I can balance equations to show that mass and charge are conserved.

Homework: Hand in missing work

As you enter... (Write down questions and answers)

Write the oxidation numbers above each element. Then write the oxidation and reduction half-reactions.

Oxidation half-reaction: $2(C_U \rightarrow C_U^{+1} + e^{-})$

Reduction half-reaction: Br+2e->2Br-1

--Are the # of electrons lost equal to the # gained? N_0

Reminder: Quiz Wednesday (Vocab, Oxidation #, Half-Reactions)

All assignments for 3rd mkg period due by Friday

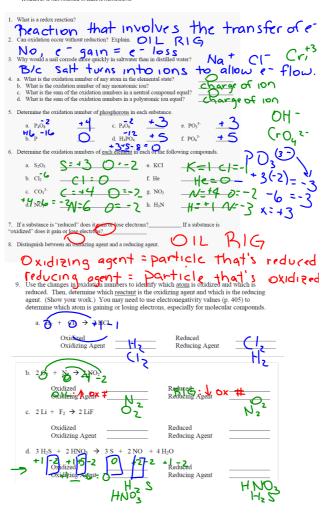
Statement of Inquiry: Energy allows for the movement of the parts of a system which is used to manipulate chemical reactions for scientific and technological uses.

8th period:

• Finish Half-Reactions Packet (45 min)

9th period:

- Make up period... You must do the following in order until completion:
- Missing work on progress report
- Electrochem classwork and homework
- HW Extra Credit Assignment
- Exit Tix (5 min)


Tix out the door (Don't forget your name.)

Write the half-reactions for the following reaction. Identify which is oxidation and which is reduction.

$$Fe + Pb^{+2} --> Fe^{+3} + Pb$$

ELECTRO CHEMISTRY: Half-Reactions
Whatever is not finished in class is homework

10. Write the oxidation number above each element. Then, determine if each equation represents a redox reaction (circle yes or no).

a.
$$2 \text{ KClO}_3 \rightarrow 2 \text{ KCl} + 3 \text{ O}_2$$
 yes/no
b. $\text{BaCLS} + 2 \text{ KIO}_1 \rightarrow \text{Ba(IO)}_2 + 2 \text{ KCl}$ yes/no
c. $\text{H2CL}_1 \rightarrow \text{NaCP}_1 \rightarrow \text{M2CL}_2 \rightarrow \text{M2Cl}_1 + 1 - 1$ yes/no
d. $\text{Mg} + \text{Br}_2^{\bullet 1} \rightarrow \text{MgBr}_2 - 12$ yes/no
e. $\text{NH}_4 \text{NO}_3 \rightarrow \text{N}_2 + \text{H}_2 \text{O}$ yes/no

c) Balance the following redox reactions by the half-reaction method, rewriting the balanced equations below the given unbalanced equation. Show your work below each reaction and put coefficients in the spaces provided:

1) __Cu + __Ag^{-1} -> __Cu^{-2} + __Ag

| Cu + __Ag^{-1} -> __

Tuesday, April 14th

<u>Learning Target</u>: I can compare and contrast hydrogen fuel cell vs electric powered vehicles in terms of electrochemistry. Homework: Hand in missing work

As you enter... (Write down questions and answers)

Balance the reaction using the half reactions method $N = \frac{12}{N} = \frac{1}{N} = \frac{1}{N$

Oxidized 2 (Mn+2 -> Mn+4 + 2 --)

reduced: 2012+4e->401-

Reminder: Quiz tomorrow (Vocab, Oxidation #, Half-Reactions)

All assignments for 3rd mkg period due by Friday

Statement of Inquiry: Energy allows for the movement of the parts of a system which is used to manipulate chemical reactions for scientific and technological uses.

9th period:

- Article: Hydrogen Fuel Cell vs Electric Cars (40 min)

Tix out the door (Don't forget your name.)

Balance the equation by writing out the half-reactions and balancing the charge (# of electrons).

$$\underline{\hspace{1cm}} Cr^{_{+6}} + \underline{\hspace{1cm}} Ag \hspace{1cm} --> \underline{\hspace{1cm}} Cr^{_{+2}} + \underline{\hspace{1cm}} Ag^{_+}$$

by Tanya Lewis, Staff Writer | January 28, 2015 07:05am ET

Reddit

More ▼

Battery-powered electric cars and hydrogen fuel cell vehicles have both seen advances in their development, and one or both of these technologies a may represent the future of "green" automobiles.

Both technologies offer a cleaner alternative to internal combustion engines, and both use electric motors powered by electrochemical devices. But what's the difference between them? For one, electric vehicles

use energy stored in a battery, whereas fuel cell vehicles have stored fuel that reacts to produce energy.

Hydrogen Fuel Cells (with hydrogen and oxygen electrodes)

Anode side (an oxidation reaction):

 $2H_2 => 4H^+ + 4e^-$

0.0 V

Cathode side (a reduction reaction):

 $O_2 + 4H^+ + 4e^- => 2H_2O$

+ 1.23 V

Net reaction (the "redox" reaction): Total= 1.23 V

 $2H_2 + O_2 => 2H_2O$

Lithium ion battery half cell reactions $CoO_2 + Li^+ + e \leftrightarrow LiCoO_2$ Eº = 1 V Dendrite metal $Li^+ + C_6 + e \leftrightarrow LiC_6$ Fº ~ -3 V Overall reaction during discharge $CoO_2 + LiC_6 \rightarrow LiCoO_2 + C_6$ $E_{oc} = E_{+} - E_{-} = 1 - (-3.01) = 4 \text{ V}$

Wednesday, April 15th

<u>Learning Target</u>: I can demonstrate my ability to write halfreactions and balance equations.

Homework: Hand in missing work

As you enter... (Write down questions and answers)

Oxidation: Fe \rightarrow Fe⁺³ + $3e^-$ reduction: $3(Ag^+, e^- \rightarrow Ag)$

Reminder: You can retake a quiz. I am after school today and tmw.

All assignments for 3rd mkg period due by Friday

Statement of Inquiry: Energy allows for the movement of the parts of a system which is used to manipulate chemical reactions for scientific and technological uses.

8th period:

- Quiz (30 min)
- HW Extra Credit (15 min)
- [Review Quiz if time permits]

9th period:

- Electrochemical Cell Stations (45 min)
- Exit Tix [5 min]

Tix out the door (Don't forget your name.)

Name 2 differences between a voltaic cell and an electrolytic cell.

(You must talk about both cells in your answer)

Thursday, April 16th

Learning Target: I can demonstrate my ability to write halfreactions and balance equations. Homework: Hand in missing work

As you enter... (Write down questions and answers)

Using your notes from the stations packet...

1. What is the difference between a voltaic and an electrolytic cell?

ex) battery source preged

spontaneous source needed (source needed) non spontaneous. In a voltaic cell, which half-reaction occurs at the

anode? The cathode? . . > Oxidation > reduction

Reminder: You can retake a quiz after school or during lunch.

Statement of Inquiry: Energy allows for the movement of the parts of a system which is used to manipulate chemical reactions for scientific and technological uses.

8th period:

- Quiz (30 min)
- HW Extra Credit (15 min)
- [Review Quiz if time permits]

9th period:

- Electrochemical Cell Stations (45 min)
- Exit Tix [5 min]

Tix out the door (Don't forget your name.)

Name 2 differences between a voltaic cell and an electrolytic cell.

(You must talk about both cells in your answer)

^{**}All assignments for 3rd mkg period due tmw**

Friday, April 17th

<u>Learning Target</u>: I can test the cell potential of different metals to observe the properties of electrochemical cells.

Homework: Hand in missing work

As you enter... (Write down questions and answers)

Red Cat An Ox Which statement describes where the oxidation and reduction half-reactions occur in an operating electrochemical cell?

- (1) Oxidation and reduction both occur at the anode.
- (2) Oxidation and reduction both occur at the cathode.
- (3) Oxidation occurs at the arode, and reduction occurs at the cathode.
- (4) Oxidation occurs at the cathode, and reduction occurs at the anode.

Reminder: Electrochemistry Test Tuesday

Statement of Inquiry: Energy allows for the movement of the parts of a system which is used to manipulate chemical reactions for scientific and technological uses.

8th/9th period:

- Finish labeling diagrams (15 min)
- Lab 21: Electrochemical Cells (60 min)
- Debrief Lab (20 min)

Lab notes...

- -Correction: Green wire (instead of red) is positive (+) and blue wire (instead of black) is negative (-).
- -Do not pour anything down the drain. There are labeled waste beakers.
- -Clean up your area and rinse out your electrochemical cells.

Actual values:

Al= 0.6V Cu= 0.1V Fe= 0.3V

Pb= 0.4V Zn=1.0V

Tix out the door (Don't forget your name.)

- 1. What information does Table J give you?
- 2. According to Table J, what is the most active metal?