Name
Part I: Choose the best answer for questions 1-11.

1. During which process does an atom gain one or more electrons?
(1) transmutation
(2) reduction
(3) oxidation
(4) neutralization
2. Which balanced equation represents a redox reaction?
(1) $\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
(2) $\mathrm{KOH}+\mathrm{HCl} \rightarrow \mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{LiBr} \rightarrow \mathrm{Li}^{+}+\mathrm{Br}^{-}$
(4) $\mathrm{Ca}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{CaSO}_{4}$
3. Which half-reaction correctly represents reduction?
(1) $\mathrm{Mn}^{4+} \rightarrow \mathrm{Mn}^{3+}+\mathrm{e}^{-}$
(2) $\mathrm{Mn}^{4+} \rightarrow \mathrm{Mn}^{7+}+3 \mathrm{e}^{-}$
(3) $\mathrm{Mn}^{4+}+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}$
(4) $\mathrm{Mn}^{4+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{7+}$
4. Given the balanced equation representing a reaction:

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

The oxidation state of chlorine in this reaction changes from
(1) -1 to +1
(2) -1 to +5
(3) +1 to -1
(4) +5 to -1
5. Which half-reaction equation represents the reduction of a potassium ion?
(1) $\mathrm{K}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{K}$
(2) $\mathrm{K}+\mathrm{e}^{-} \rightarrow \mathrm{K}^{+}$
(3) $\mathrm{K}^{+} \rightarrow \mathrm{K}+\mathrm{e}^{-}$
(4) $\mathrm{K} \rightarrow \mathrm{K}^{+}+\mathrm{e}^{-}$
6. In a redox reaction, the total number of electrons lost is
(1) less than the total number of electrons gained
(2) greater than the total number of electrons gained
(3) equal to the total number of electrons gained
(4) equal to the total number of protons gained
7. Which balanced equation represents a redox reaction?
(1) CuCO_{3} (s) $\rightarrow \mathrm{CuO}$ (s) $+\mathrm{CO}_{2}$ (g)
(2) $2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
(3) $\mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{KCl}(\mathrm{aq}) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{KNO}_{3}(\mathrm{aq})$
(4) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
8. Which changes occur when Pt^{2+} is reduced?
(1) $\mathrm{The}_{\mathrm{Pt}^{2+}}$ gains electrons and its oxidation number increases.
(2) $\mathrm{The}_{\mathrm{Pt}^{2+}}$ gains electrons and its oxidation number decreases.
(3) $\mathrm{The}_{\mathrm{Pt}}{ }^{2+}$ loses electrons and its oxidation number increases.
(4) $\mathrm{The}_{\mathrm{Pt}^{2+}}$ loses electrons and its oxidation number decreases.
9. Given the balanced ionic equation representing a reaction:

$$
2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Mg}(\mathrm{~s}) \rightarrow 3 \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Al}(\mathrm{~s})
$$

In this reaction, electrons are transferred from
(1) Al to Mg^{2+}
(2) Al^{3+} to Mg
(3) Mg to Al^{3+}
(4) Mg^{2+} to Al
10. What is the oxidation number of chromium in the chromate ion, $\mathrm{CrO}_{4}{ }^{2-}$?
(1) +6
(2) +2
(3) +3
(4) +8
11. Given the balanced equation representing a redox reaction:

$$
2 \mathrm{Al}+3 \mathrm{Cu}^{2+} \rightarrow 2 \mathrm{Al}^{3+}+3 \mathrm{Cu}
$$

Which statement is true about this reaction?
(1) Each Al loses $2 \mathrm{e}-$ and each $\mathrm{Cu} 2+$ gains $3 \mathrm{e}-$.
(2) Each Al loses $3 \mathrm{e}-$ and each $\mathrm{Cu} 2+$ gains $2 \mathrm{e}-$.
(3) Each $\mathrm{Al} 3+$ gains $2 \mathrm{e}-$ and each Cu loses $3 \mathrm{e}-$.
(4) Each $\mathrm{Al} 3+$ gains $3 \mathrm{e}-$ and each Cu loses $2 \mathrm{e}-$.

Part II: For each reaction, write out the oxidation and reduction half reactions.
12. $2 \mathrm{Ca}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CaO}(\mathrm{s})$
13. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
14. $\mathrm{Cd}(\mathrm{s})+\mathrm{NiO}_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Cd}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})$
15. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
16. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
17. $4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
18. $\mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow \mathrm{KCl}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$
19. $\mathrm{Fe}(\mathrm{s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

1. (2)
2. (1)
3. (3)
4. (4)
5. (1)
6. (3)
7. (2)
8. (2)
9. (3)
10. (1)
11. (2)
12. Red: $\mathrm{O}_{2}{ }^{0}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{O}^{2-}$ $\mathrm{Ox}: 2 \mathrm{Ca}^{0}+\rightarrow 2 \mathrm{Ca}^{2+}+2 \mathrm{e}^{-}$
13. Red: $\mathrm{N}_{2}{ }^{0}+6 \mathrm{e}^{-} \rightarrow 2 \mathrm{~N}^{3-}$ $\mathrm{Ox}: 3 \mathrm{H}_{2}{ }^{0}+\rightarrow 6 \mathrm{H}^{+}+6 \mathrm{e}^{-}$
14. Red: $\mathrm{Ni}^{4+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}^{2+}$ Ox: $\mathrm{Cd}^{0}+\rightarrow \mathrm{C}^{2+}+2 \mathrm{e}^{-}$
15. Red: $\mathrm{O}_{2}{ }^{0}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{O}^{2-}$ $\mathrm{Ox}: \mathrm{N}_{2}{ }^{0}+\rightarrow 2 \mathrm{~N}^{2+}+4 \mathrm{e}^{-}$
16. Red: $\mathrm{O}_{2}{ }^{0}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{O}^{2-}$ $\mathrm{Ox}: 2 \mathrm{H}_{2}{ }^{0}+\rightarrow 4 \mathrm{H}^{2+}+4 \mathrm{e}^{-}$
17. Red: $3 \mathrm{O}_{2}{ }^{0}+12 \mathrm{e}^{-} \rightarrow 6 \mathrm{O}^{2-}$ $\mathrm{Ox}: 4 \mathrm{Fe}^{0}+\rightarrow 4 \mathrm{Fe}^{3+}+12 \mathrm{e}^{-}$
18. Red: $2 \mathrm{Cl}^{5+}+12 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}$ $\mathrm{Ox}: 6 \mathrm{O}^{2-}+3 \mathrm{O}_{2}{ }^{0}+12 \mathrm{e}^{-}$
19. Red: $2 \mathrm{H}^{+1}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}{ }^{0}$ $\mathrm{Ox}: \mathrm{Fe}^{0}+\rightarrow \mathrm{Fe}^{2+}+2 \mathrm{e}^{-}$
